![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb4t | GIF version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1930). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsb4t | ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1477 | . . . . 5 ⊢ Ⅎ𝑧Ⅎ𝑧𝜑 | |
2 | 1 | nfal 1509 | . . . 4 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑧𝜑 |
3 | nfnae 1651 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
4 | 2, 3 | nfan 1498 | . . 3 ⊢ Ⅎ𝑧(∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
5 | df-nf 1391 | . . . . . 6 ⊢ (Ⅎ𝑧𝜑 ↔ ∀𝑧(𝜑 → ∀𝑧𝜑)) | |
6 | 5 | albii 1400 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 ↔ ∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑)) |
7 | hbsb4t 1931 | . . . . 5 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) | |
8 | 6, 7 | sylbi 119 | . . . 4 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
9 | 8 | imp 122 | . . 3 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | nfd 1457 | . 2 ⊢ ((∀𝑥Ⅎ𝑧𝜑 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
11 | 10 | ex 113 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1283 Ⅎwnf 1390 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 |
This theorem is referenced by: dvelimdf 1934 |
Copyright terms: Public domain | W3C validator |