ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d GIF version

Theorem nfsbc1d 2840
Description: Deduction version of nfsbc1 2841. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfsbc1d (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 2825 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 nfsbc1d.2 . . 3 (𝜑𝑥𝐴)
3 nfab1 2225 . . . 4 𝑥{𝑥𝜓}
43a1i 9 . . 3 (𝜑𝑥{𝑥𝜓})
52, 4nfeld 2238 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥𝜓})
61, 5nfxfrd 1405 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1390  wcel 1434  {cab 2069  wnfc 2210  [wsbc 2824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-sbc 2825
This theorem is referenced by:  nfsbc1  2841  nfcsb1d  2945
  Copyright terms: Public domain W3C validator