![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsbcd | GIF version |
Description: Deduction version of nfsbc 2845. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbcd.1 | ⊢ Ⅎ𝑦𝜑 |
nfsbcd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfsbcd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfsbcd | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 2826 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
2 | nfsbcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfsbcd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfsbcd.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfabd 2241 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
6 | 2, 5 | nfeld 2238 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfxfrd 1405 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1390 ∈ wcel 1434 {cab 2069 Ⅎwnfc 2210 [wsbc 2825 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-sbc 2826 |
This theorem is referenced by: nfsbc 2845 nfcsbd 2949 sbcnestgf 2963 |
Copyright terms: Public domain | W3C validator |