ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn GIF version

Theorem nfunsn 5455
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)

Proof of Theorem nfunsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2031 . . . . . . 7 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)
2 vex 2689 . . . . . . . . . 10 𝑦 ∈ V
32brres 4825 . . . . . . . . 9 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝐴}))
4 velsn 3544 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5 breq1 3932 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
64, 5sylbi 120 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦𝐴𝐹𝑦))
76biimpac 296 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦)
83, 7sylbi 120 . . . . . . . 8 (𝑥(𝐹 ↾ {𝐴})𝑦𝐴𝐹𝑦)
98moimi 2064 . . . . . . 7 (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
101, 9syl 14 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
1110alrimiv 1846 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
12 relres 4847 . . . . 5 Rel (𝐹 ↾ {𝐴})
1311, 12jctil 310 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
14 dffun6 5137 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
1513, 14sylibr 133 . . 3 (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
1615con3i 621 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦)
17 tz6.12-2 5412 . 2 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
1816, 17syl 14 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  ∃!weu 1999  ∃*wmo 2000  c0 3363  {csn 3527   class class class wbr 3929  cres 4541  Rel wrel 4544  Fun wfun 5117  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator