ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvres GIF version

Theorem nfvres 5447
Description: The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 5126 . . . . . . . . . 10 ((𝐹𝐵)‘𝐴) = (℩𝑥𝐴(𝐹𝐵)𝑥)
2 df-iota 5083 . . . . . . . . . 10 (℩𝑥𝐴(𝐹𝐵)𝑥) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
31, 2eqtri 2158 . . . . . . . . 9 ((𝐹𝐵)‘𝐴) = {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}
43eleq2i 2204 . . . . . . . 8 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ 𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
5 eluni 3734 . . . . . . . 8 (𝑧 {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
64, 5bitri 183 . . . . . . 7 (𝑧 ∈ ((𝐹𝐵)‘𝐴) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}))
7 exsimpr 1597 . . . . . . 7 (∃𝑤(𝑧𝑤𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}}) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
86, 7sylbi 120 . . . . . 6 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}})
9 df-clab 2124 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ [𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦})
10 nfv 1508 . . . . . . . . 9 𝑦{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}
11 sneq 3533 . . . . . . . . . 10 (𝑦 = 𝑤 → {𝑦} = {𝑤})
1211eqeq2d 2149 . . . . . . . . 9 (𝑦 = 𝑤 → ({𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤}))
1310, 12sbie 1764 . . . . . . . 8 ([𝑤 / 𝑦]{𝑥𝐴(𝐹𝐵)𝑥} = {𝑦} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
149, 13bitri 183 . . . . . . 7 (𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1514exbii 1584 . . . . . 6 (∃𝑤 𝑤 ∈ {𝑦 ∣ {𝑥𝐴(𝐹𝐵)𝑥} = {𝑦}} ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
168, 15sylib 121 . . . . 5 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
17 euabsn2 3587 . . . . 5 (∃!𝑥 𝐴(𝐹𝐵)𝑥 ↔ ∃𝑤{𝑥𝐴(𝐹𝐵)𝑥} = {𝑤})
1816, 17sylibr 133 . . . 4 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → ∃!𝑥 𝐴(𝐹𝐵)𝑥)
19 euex 2027 . . . 4 (∃!𝑥 𝐴(𝐹𝐵)𝑥 → ∃𝑥 𝐴(𝐹𝐵)𝑥)
20 df-br 3925 . . . . . . . 8 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵))
21 df-res 4546 . . . . . . . . 9 (𝐹𝐵) = (𝐹 ∩ (𝐵 × V))
2221eleq2i 2204 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹𝐵) ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
2320, 22bitri 183 . . . . . . 7 (𝐴(𝐹𝐵)𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)))
24 elin 3254 . . . . . . . 8 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐹 ∧ ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V)))
2524simprbi 273 . . . . . . 7 (⟨𝐴, 𝑥⟩ ∈ (𝐹 ∩ (𝐵 × V)) → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
2623, 25sylbi 120 . . . . . 6 (𝐴(𝐹𝐵)𝑥 → ⟨𝐴, 𝑥⟩ ∈ (𝐵 × V))
27 opelxp1 4568 . . . . . 6 (⟨𝐴, 𝑥⟩ ∈ (𝐵 × V) → 𝐴𝐵)
2826, 27syl 14 . . . . 5 (𝐴(𝐹𝐵)𝑥𝐴𝐵)
2928exlimiv 1577 . . . 4 (∃𝑥 𝐴(𝐹𝐵)𝑥𝐴𝐵)
3018, 19, 293syl 17 . . 3 (𝑧 ∈ ((𝐹𝐵)‘𝐴) → 𝐴𝐵)
3130con3i 621 . 2 𝐴𝐵 → ¬ 𝑧 ∈ ((𝐹𝐵)‘𝐴))
3231eq0rdv 3402 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  [wsb 1735  ∃!weu 1997  {cab 2123  Vcvv 2681  cin 3065  c0 3358  {csn 3522  cop 3525   cuni 3731   class class class wbr 3924   × cxp 4532  cres 4536  cio 5081  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-res 4546  df-iota 5083  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator