ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig GIF version

Theorem nlt1pig 6497
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig (𝐴N → ¬ 𝐴 <N 1𝑜)

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 6464 . . 3 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 264 . 2 (𝐴N𝐴 ≠ ∅)
3 noel 3256 . . . . 5 ¬ 𝐴 ∈ ∅
4 1pi 6471 . . . . . . . . 9 1𝑜N
5 ltpiord 6475 . . . . . . . . 9 ((𝐴N ∧ 1𝑜N) → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
64, 5mpan2 409 . . . . . . . 8 (𝐴N → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
7 df-1o 6032 . . . . . . . . . 10 1𝑜 = suc ∅
87eleq2i 2120 . . . . . . . . 9 (𝐴 ∈ 1𝑜𝐴 ∈ suc ∅)
9 elsucg 4169 . . . . . . . . 9 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 185 . . . . . . . 8 (𝐴N → (𝐴 ∈ 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 181 . . . . . . 7 (𝐴N → (𝐴 <N 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 284 . . . . . 6 ((𝐴N𝐴 <N 1𝑜) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 653 . . . . 5 ((𝐴N𝐴 <N 1𝑜) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 15 . . . 4 ((𝐴N𝐴 <N 1𝑜) → 𝐴 = ∅)
1514ex 112 . . 3 (𝐴N → (𝐴 <N 1𝑜𝐴 = ∅))
1615necon3ad 2262 . 2 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1𝑜))
172, 16mpd 13 1 (𝐴N → ¬ 𝐴 <N 1𝑜)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639   = wceq 1259  wcel 1409  wne 2220  c0 3252   class class class wbr 3792  suc csuc 4130  ωcom 4341  1𝑜c1o 6025  Ncnpi 6428   <N clti 6431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-eprel 4054  df-suc 4136  df-iom 4342  df-xp 4379  df-1o 6032  df-ni 6460  df-lti 6463
This theorem is referenced by:  caucvgsr  6944
  Copyright terms: Public domain W3C validator