![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nltpnft | GIF version |
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
nltpnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 8980 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renepnf 7280 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 2 | neneqd 2270 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = +∞) |
4 | ltpnf 8984 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
5 | notnot 592 | . . . . 5 ⊢ (𝐴 < +∞ → ¬ ¬ 𝐴 < +∞) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ 𝐴 < +∞) |
7 | 3, 6 | 2falsed 651 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
8 | id 19 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
9 | pnfxr 7285 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
10 | xrltnr 8983 | . . . . . 6 ⊢ (+∞ ∈ ℝ* → ¬ +∞ < +∞) | |
11 | 9, 10 | ax-mp 7 | . . . . 5 ⊢ ¬ +∞ < +∞ |
12 | breq1 3808 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 < +∞ ↔ +∞ < +∞)) | |
13 | 11, 12 | mtbiri 633 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 < +∞) |
14 | 8, 13 | 2thd 173 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
15 | mnfnepnf 7288 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
16 | 15 | neii 2251 | . . . . 5 ⊢ ¬ -∞ = +∞ |
17 | eqeq1 2089 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞)) | |
18 | 16, 17 | mtbiri 633 | . . . 4 ⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
19 | mnfltpnf 8988 | . . . . . . 7 ⊢ -∞ < +∞ | |
20 | breq1 3808 | . . . . . . 7 ⊢ (𝐴 = -∞ → (𝐴 < +∞ ↔ -∞ < +∞)) | |
21 | 19, 20 | mpbiri 166 | . . . . . 6 ⊢ (𝐴 = -∞ → 𝐴 < +∞) |
22 | 21 | necon3bi 2299 | . . . . 5 ⊢ (¬ 𝐴 < +∞ → 𝐴 ≠ -∞) |
23 | 22 | necon2bi 2304 | . . . 4 ⊢ (𝐴 = -∞ → ¬ ¬ 𝐴 < +∞) |
24 | 18, 23 | 2falsed 651 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
25 | 7, 14, 24 | 3jaoi 1235 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
26 | 1, 25 | sylbi 119 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∨ w3o 919 = wceq 1285 ∈ wcel 1434 class class class wbr 3805 ℝcr 7094 +∞cpnf 7264 -∞cmnf 7265 ℝ*cxr 7266 < clt 7267 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-pre-ltirr 7202 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |