ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 GIF version

Theorem nn01to3 9377
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 967 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 1 ≤ 𝑁)
2 simp1 966 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℕ0)
3 1z 9048 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 9042 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 9069 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 410 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
72, 6syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
81, 7mpbid 146 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 < 𝑁 ∨ 1 = 𝑁))
9 1nn0 8961 . . . . . . . . . . 11 1 ∈ ℕ0
10 nn0ltp1le 9084 . . . . . . . . . . 11 ((1 ∈ ℕ0𝑁 ∈ ℕ0) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
119, 10mpan 420 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
12 df-2 8747 . . . . . . . . . . 11 2 = (1 + 1)
1312breq1i 3906 . . . . . . . . . 10 (2 ≤ 𝑁 ↔ (1 + 1) ≤ 𝑁)
1411, 13syl6bbr 197 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ 2 ≤ 𝑁))
15 2z 9050 . . . . . . . . . 10 2 ∈ ℤ
16 zleloe 9069 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1715, 4, 16sylancr 410 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1814, 17bitrd 187 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1918orbi1d 765 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
202, 19syl 14 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
218, 20mpbid 146 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))
2221orcomd 703 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)))
23 orcom 702 . . . . 5 ((2 < 𝑁 ∨ 2 = 𝑁) ↔ (2 = 𝑁 ∨ 2 < 𝑁))
2423orbi2i 736 . . . 4 ((1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2522, 24sylib 121 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
26 3orass 950 . . 3 ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2725, 26sylibr 133 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁))
28 3mix1 1135 . . . . 5 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
2928eqcoms 2120 . . . 4 (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3029a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
31 3mix2 1136 . . . . 5 (𝑁 = 2 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3231eqcoms 2120 . . . 4 (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3332a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
34 simp3 968 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
3534biantrurd 303 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (3 ≤ 𝑁 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
36 2nn0 8962 . . . . . . . 8 2 ∈ ℕ0
37 nn0ltp1le 9084 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3836, 37mpan 420 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
39 df-3 8748 . . . . . . . 8 3 = (2 + 1)
4039breq1i 3906 . . . . . . 7 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
4138, 40syl6bbr 197 . . . . . 6 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ 3 ≤ 𝑁))
422, 41syl 14 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 ↔ 3 ≤ 𝑁))
432nn0red 8999 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
44 3re 8762 . . . . . 6 3 ∈ ℝ
45 letri3 7813 . . . . . 6 ((𝑁 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4643, 44, 45sylancl 409 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4735, 42, 463bitr4d 219 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁𝑁 = 3))
48 3mix3 1137 . . . 4 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
4947, 48syl6bi 162 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5030, 33, 493jaod 1267 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5127, 50mpd 13 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682  w3o 946  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  1c1 7589   + caddc 7591   < clt 7768  cle 7769  2c2 8739  3c3 8740  0cn0 8945  cz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-2 8747  df-3 8748  df-n0 8946  df-z 9023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator