ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge0div GIF version

Theorem nn0ge0div 8515
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
nn0ge0div ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))

Proof of Theorem nn0ge0div
StepHypRef Expression
1 nn0ge0 8380 . . 3 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
21adantr 270 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ 𝐾)
3 elnnz 8442 . . . 4 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
4 nn0re 8364 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
54adantr 270 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐾 ∈ ℝ)
6 zre 8436 . . . . . 6 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
76ad2antrl 474 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐿 ∈ ℝ)
8 simprr 499 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 0 < 𝐿)
95, 7, 83jca 1119 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
103, 9sylan2b 281 . . 3 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿))
11 ge0div 8016 . . 3 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
1210, 11syl 14 . 2 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿)))
132, 12mpbid 145 1 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920  wcel 1434   class class class wbr 3793  (class class class)co 5543  cr 7042  0cc0 7043   < clt 7215  cle 7216   / cdiv 7827  cn 8106  0cn0 8355  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433
This theorem is referenced by:  fldivnn0  9377  divfl0  9378
  Copyright terms: Public domain W3C validator