ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ob GIF version

Theorem nn0ob 10441
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
Assertion
Ref Expression
nn0ob (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0ob
StepHypRef Expression
1 nn0o 10440 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 nn0cn 8354 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3 xp1d2m1eqxm1d2 8339 . . . . . . 7 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
43eqcomd 2087 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
52, 4syl 14 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
6 peano2cnm 7430 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
72, 6syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
87halfcld 8331 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℂ)
9 1cnd 7186 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
10 peano2nn0 8384 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1110nn0cnd 8399 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1211halfcld 8331 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℂ)
138, 9, 12addlsub 7530 . . . . 5 (𝑁 ∈ ℕ0 → ((((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2) ↔ ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)))
145, 13mpbird 165 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
1514adantr 270 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
16 peano2nn0 8384 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1716adantl 271 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1815, 17eqeltrrd 2157 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ0)
191, 18impbida 561 1 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  (class class class)co 5537  cc 7030  1c1 7033   + caddc 7035  cmin 7335   / cdiv 7816  2c2 8145  0cn0 8344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-po 4053  df-iso 4054  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817  df-inn 8096  df-2 8154  df-3 8155  df-4 8156  df-n0 8345  df-z 8422  df-uz 8690
This theorem is referenced by:  nn0oddm1d2  10442
  Copyright terms: Public domain W3C validator