ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0oddm1d2 GIF version

Theorem nn0oddm1d2 11606
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nn0oddm1d2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0oddm1d2
StepHypRef Expression
1 nn0z 9074 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 oddp1d2 11587 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 14 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 nn0re 8986 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 1red 7781 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
6 nn0ge0 9002 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
7 0le1 8243 . . . . . . . . . 10 0 ≤ 1
87a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ≤ 1)
94, 5, 6, 8addge0d 8284 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
10 peano2nn0 9017 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1110nn0red 9031 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
12 2re 8790 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
14 2pos 8811 . . . . . . . . . 10 0 < 2
1514a1i 9 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < 2)
16 ge0div 8629 . . . . . . . . 9 (((𝑁 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2)))
1711, 13, 15, 16syl3anc 1216 . . . . . . . 8 (𝑁 ∈ ℕ0 → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2)))
189, 17mpbid 146 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
1918anim1i 338 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 ≤ ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ))
2019ancomd 265 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
21 elnn0z 9067 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
2220, 21sylibr 133 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
2322ex 114 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
24 nn0z 9074 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2523, 24impbid1 141 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0))
26 nn0ob 11605 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
273, 25, 263bitrd 213 1 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  2c2 8771  0cn0 8977  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator