![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0oddm1d2 | GIF version |
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
nn0oddm1d2 | ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 8452 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | oddp1d2 10434 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
4 | nn0re 8364 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
5 | 1red 7196 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
6 | nn0ge0 8380 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
7 | 0le1 7652 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 1) |
9 | 4, 5, 6, 8 | addge0d 7689 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1)) |
10 | peano2nn0 8395 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
11 | 10 | nn0red 8409 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ) |
12 | 2re 8176 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
13 | 12 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
14 | 2pos 8197 | . . . . . . . . . 10 ⊢ 0 < 2 | |
15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 < 2) |
16 | ge0div 8016 | . . . . . . . . 9 ⊢ (((𝑁 + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) | |
17 | 11, 13, 15, 16 | syl3anc 1170 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ (𝑁 + 1) ↔ 0 ≤ ((𝑁 + 1) / 2))) |
18 | 9, 17 | mpbid 145 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2)) |
19 | 18 | anim1i 333 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (0 ≤ ((𝑁 + 1) / 2) ∧ ((𝑁 + 1) / 2) ∈ ℤ)) |
20 | 19 | ancomd 263 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) |
21 | elnn0z 8445 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2))) | |
22 | 20, 21 | sylibr 132 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0) |
23 | 22 | ex 113 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0)) |
24 | nn0z 8452 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
25 | 23, 24 | impbid1 140 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0)) |
26 | nn0ob 10452 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | |
27 | 3, 25, 26 | 3bitrd 212 | 1 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 class class class wbr 3793 (class class class)co 5543 ℝcr 7042 0cc0 7043 1c1 7044 + caddc 7046 < clt 7215 ≤ cle 7216 − cmin 7346 / cdiv 7827 2c2 8156 ℕ0cn0 8355 ℤcz 8432 ∥ cdvds 10340 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-xor 1308 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-po 4059 df-iso 4060 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-n0 8356 df-z 8433 df-uz 8701 df-dvds 10341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |