![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0opthlem1d | GIF version |
Description: A rather pretty lemma for nn0opth2 9748. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthlem1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
nn0opthlem1d.2 | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0opthlem1d | ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthlem1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1nn0 8371 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ0) |
4 | 1, 3 | nn0addcld 8412 | . . 3 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ0) |
5 | nn0opthlem1d.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
6 | 4, 5 | nn0le2msqd 9743 | . 2 ⊢ (𝜑 → ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
7 | nn0ltp1le 8494 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
8 | 1, 5, 7 | syl2anc 403 | . 2 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
9 | 1, 1 | nn0mulcld 8413 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐴) ∈ ℕ0) |
10 | 2nn0 8372 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
11 | 10 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ0) |
12 | 11, 1 | nn0mulcld 8413 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℕ0) |
13 | 9, 12 | nn0addcld 8412 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0) |
14 | 5, 5 | nn0mulcld 8413 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐶) ∈ ℕ0) |
15 | nn0ltp1le 8494 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
16 | 13, 14, 15 | syl2anc 403 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
17 | 1 | nn0cnd 8410 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 1cnd 7197 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
19 | binom2 9682 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
20 | 17, 18, 19 | syl2anc 403 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
21 | 17, 18 | addcld 7200 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
22 | 21 | sqvald 9699 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
23 | 17 | sqvald 9699 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
24 | 23 | oveq1d 5558 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))) |
25 | 18 | sqvald 9699 | . . . . . . 7 ⊢ (𝜑 → (1↑2) = (1 · 1)) |
26 | 24, 25 | oveq12d 5561 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
27 | 20, 22, 26 | 3eqtr3d 2122 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))) |
28 | 17 | mulid1d 7198 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
29 | 28 | oveq2d 5559 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
30 | 29 | oveq2d 5559 | . . . . . 6 ⊢ (𝜑 → ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))) |
31 | 18 | mulid1d 7198 | . . . . . 6 ⊢ (𝜑 → (1 · 1) = 1) |
32 | 30, 31 | oveq12d 5561 | . . . . 5 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
33 | 27, 32 | eqtrd 2114 | . . . 4 ⊢ (𝜑 → ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)) |
34 | 33 | breq1d 3803 | . . 3 ⊢ (𝜑 → (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) |
35 | 16, 34 | bitr4d 189 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))) |
36 | 6, 8, 35 | 3bitr4d 218 | 1 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∈ wcel 1434 class class class wbr 3793 (class class class)co 5543 ℂcc 7041 1c1 7044 + caddc 7046 · cmul 7048 < clt 7215 ≤ cle 7216 2c2 8156 ℕ0cn0 8355 ↑cexp 9572 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-if 3360 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-po 4059 df-iso 4060 df-iord 4129 df-on 4131 df-ilim 4132 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-frec 6040 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-2 8165 df-n0 8356 df-z 8433 df-uz 8701 df-iseq 9522 df-iexp 9573 |
This theorem is referenced by: nn0opthlem2d 9745 |
Copyright terms: Public domain | W3C validator |