ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn GIF version

Theorem nn0p1nn 8278
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 8001 . 2 1 ∈ ℕ
2 nn0nnaddcl 8270 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
31, 2mpan2 409 1 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  (class class class)co 5540  1c1 6948   + caddc 6950  cn 7990  0cn0 8239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-iota 4895  df-fv 4938  df-ov 5543  df-inn 7991  df-n0 8240
This theorem is referenced by:  elnn0nn  8281  elz2  8370  peano5uzti  8405  fseq1p1m1  9058  fzonn0p1  9169  nn0ennn  9373  faccl  9603  facdiv  9606  facwordi  9608  faclbnd  9609  facubnd  9613  bcm1k  9628  bcp1n  9629  bcp1nk  9630  bcpasc  9634
  Copyright terms: Public domain W3C validator