ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0rei GIF version

Theorem nn0rei 8366
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
Hypothesis
Ref Expression
nn0re.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
nn0rei 𝐴 ∈ ℝ

Proof of Theorem nn0rei
StepHypRef Expression
1 nn0ssre 8359 . 2 0 ⊆ ℝ
2 nn0re.1 . 2 𝐴 ∈ ℕ0
31, 2sselii 2997 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 1434  cr 7042  0cn0 8355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-cnex 7129  ax-resscn 7130  ax-1re 7132  ax-addrcl 7135  ax-rnegex 7147
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-int 3645  df-inn 8107  df-n0 8356
This theorem is referenced by:  nn0cni  8367  nn0le2xi  8405  nn0lele2xi  8406  numlt  8582  numltc  8583  decle  8591  decleh  8592
  Copyright terms: Public domain W3C validator