ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0z GIF version

Theorem nn0z 8322
Description: A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0z (𝑁 ∈ ℕ0𝑁 ∈ ℤ)

Proof of Theorem nn0z
StepHypRef Expression
1 nn0ssz 8320 . 2 0 ⊆ ℤ
21sseli 2969 1 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  0cn0 8239  cz 8302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303
This theorem is referenced by:  nn0negz  8336  nn0ltp1le  8364  nn0leltp1  8365  nn0ltlem1  8366  nn0sub  8368  nn0n0n1ge2b  8378  nn0lt10b  8379  nn0lt2  8380  nn0lem1lt  8381  fnn0ind  8413  nn0pzuz  8626  nn01to3  8649  nn0ge2m1nnALT  8650  fz1n  9010  ige2m1fz  9074  elfz2nn0  9075  fznn0  9076  elfz0add  9081  elfz0addOLD  9082  fzctr  9093  difelfzle  9094  fzo1fzo0n0  9141  fzofzim  9146  elfzodifsumelfzo  9159  zpnn0elfzo  9165  fzossfzop1  9170  ubmelm1fzo  9184  adddivflid  9242  fldivnn0  9245  divfl0  9246  flqmulnn0  9249  fldivnn0le  9253  zmodidfzoimp  9304  modqmuladdnn0  9318  modifeq2int  9336  modfzo0difsn  9345  expdivap  9471  faclbnd3  9611  bccmpl  9622  bcnp1n  9627  bcn2  9632  bcp1m1  9633  dvds1  10165  dvdsext  10167  addmodlteqALT  10171  oddnn02np1  10192  oddge22np1  10193  nn0ehalf  10215  nn0o1gt2  10217  nno  10218  nn0o  10219  nn0oddm1d2  10221  modremain  10241  nn0seqcvgd  10263  algcvgblem  10271  ialgcvga  10273
  Copyright terms: Public domain W3C validator