ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn2ge GIF version

Theorem nn2ge 8021
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnaddcl 8009 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
2 0red 7085 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
3 nnre 7996 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 266 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 nngt0 8014 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
65adantl 266 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
72, 4, 6ltled 7193 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
8 nnre 7996 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 265 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 4addge01d 7597 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
117, 10mpbid 139 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ≤ (𝐴 + 𝐵))
12 nngt0 8014 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 265 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
142, 9, 13ltled 7193 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
154, 9addge02d 7598 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
1614, 15mpbid 139 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≤ (𝐴 + 𝐵))
17 breq2 3795 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐴𝑥𝐴 ≤ (𝐴 + 𝐵)))
18 breq2 3795 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝐵𝑥𝐵 ≤ (𝐴 + 𝐵)))
1917, 18anbi12d 450 . . 3 (𝑥 = (𝐴 + 𝐵) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))))
2019rspcev 2673 . 2 (((𝐴 + 𝐵) ∈ ℕ ∧ (𝐴 ≤ (𝐴 + 𝐵) ∧ 𝐵 ≤ (𝐴 + 𝐵))) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
211, 11, 16, 20syl12anc 1144 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cr 6945  0cc0 6946   + caddc 6949   < clt 7118  cle 7119  cn 7989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-inn 7990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator