![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnaddm1cl | GIF version |
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnaddm1cl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 8114 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
2 | nncn 8114 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
3 | ax-1cn 7131 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | addsub 7386 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) | |
5 | 3, 4 | mp3an3 1258 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) |
6 | 1, 2, 5 | syl2an 283 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵)) |
7 | nnm1nn0 8396 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0) | |
8 | nn0nnaddcl 8386 | . . 3 ⊢ (((𝐴 − 1) ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ) | |
9 | 7, 8 | sylan 277 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ) |
10 | 6, 9 | eqeltrd 2156 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 1c1 7044 + caddc 7046 − cmin 7346 ℕcn 8106 ℕ0cn0 8355 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-addass 7140 ax-distr 7142 ax-i2m1 7143 ax-0id 7146 ax-rnegex 7147 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-opab 3848 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-sub 7348 df-inn 8107 df-n0 8356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |