Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni GIF version

Theorem nncni 8116
 Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nncni 𝐴 ∈ ℂ

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3 𝐴 ∈ ℕ
21nnrei 8115 . 2 𝐴 ∈ ℝ
32recni 7193 1 𝐴 ∈ ℂ
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1434  ℂcc 7041  ℕcn 8106 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-cnex 7129  ax-resscn 7130  ax-1re 7132  ax-addrcl 7135 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-in 2980  df-ss 2987  df-int 3645  df-inn 8107 This theorem is referenced by:  9p1e10  8560  numnncl2  8580  dec10p  8600  3dec  9739  4bc2eq6  9798
 Copyright terms: Public domain W3C validator