![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndir | GIF version |
Description: Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.) |
Ref | Expression |
---|---|
nndir | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐶) +𝑜 (𝐵 ·𝑜 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nndi 6130 | . . 3 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 ·𝑜 𝐴) +𝑜 (𝐶 ·𝑜 𝐵))) | |
2 | 1 | 3coml 1146 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 ·𝑜 𝐴) +𝑜 (𝐶 ·𝑜 𝐵))) |
3 | nnacl 6124 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) | |
4 | nnmcom 6133 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ (𝐴 +𝑜 𝐵) ∈ ω) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐴 +𝑜 𝐵) ·𝑜 𝐶)) | |
5 | 3, 4 | sylan2 280 | . . . 4 ⊢ ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐴 +𝑜 𝐵) ·𝑜 𝐶)) |
6 | 5 | ancoms 264 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐴 +𝑜 𝐵) ·𝑜 𝐶)) |
7 | 6 | 3impa 1134 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐴 +𝑜 𝐵) ·𝑜 𝐶)) |
8 | nnmcom 6133 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) = (𝐴 ·𝑜 𝐶)) | |
9 | 8 | ancoms 264 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝐴) = (𝐴 ·𝑜 𝐶)) |
10 | 9 | 3adant2 958 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝐴) = (𝐴 ·𝑜 𝐶)) |
11 | nnmcom 6133 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐶)) | |
12 | 11 | ancoms 264 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐶)) |
13 | 12 | 3adant1 957 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐶)) |
14 | 10, 13 | oveq12d 5561 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) +𝑜 (𝐶 ·𝑜 𝐵)) = ((𝐴 ·𝑜 𝐶) +𝑜 (𝐵 ·𝑜 𝐶))) |
15 | 2, 7, 14 | 3eqtr3d 2122 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐶) +𝑜 (𝐵 ·𝑜 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ωcom 4339 (class class class)co 5543 +𝑜 coa 6062 ·𝑜 comu 6063 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-iord 4129 df-on 4131 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-irdg 6019 df-oadd 6069 df-omul 6070 |
This theorem is referenced by: addassnq0 6714 |
Copyright terms: Public domain | W3C validator |