ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivides GIF version

Theorem nndivides 10410
Description: Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
nndivides ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem nndivides
StepHypRef Expression
1 nndiv 8198 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝑀 · 𝑛) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
2 nncn 8166 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
32adantl 271 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
4 nncn 8166 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
54ad2antrr 472 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℂ)
63, 5mulcomd 7254 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑀) = (𝑀 · 𝑛))
76eqeq1d 2091 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · 𝑀) = 𝑁 ↔ (𝑀 · 𝑛) = 𝑁))
87rexbidva 2370 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑀 · 𝑛) = 𝑁))
9 nndivdvds 10409 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
109ancoms 264 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
111, 8, 103bitr4rd 219 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3805  (class class class)co 5563  cc 7093   · cmul 7100   / cdiv 7879  cn 8158  cdvds 10403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-dvds 10404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator