![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnltlem1 | GIF version |
Description: Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
Ref | Expression |
---|---|
nnltlem1 | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 8487 | . 2 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 8487 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | zltlem1 8525 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
4 | 1, 2, 3 | syl2an 283 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 class class class wbr 3806 (class class class)co 5564 1c1 7080 < clt 7251 ≤ cle 7252 − cmin 7382 ℕcn 8142 ℤcz 8468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-addcom 7174 ax-addass 7176 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-0id 7182 ax-rnegex 7183 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-ltadd 7190 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2826 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-inn 8143 df-n0 8392 df-z 8469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |