ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm0r GIF version

Theorem nnm0r 6019
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnm0r (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅)

Proof of Theorem nnm0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5481 . . 3 (𝑥 = ∅ → (∅ ·𝑜 𝑥) = (∅ ·𝑜 ∅))
21eqeq1d 2048 . 2 (𝑥 = ∅ → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 ∅) = ∅))
3 oveq2 5481 . . 3 (𝑥 = 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝑦))
43eqeq1d 2048 . 2 (𝑥 = 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝑦) = ∅))
5 oveq2 5481 . . 3 (𝑥 = suc 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 suc 𝑦))
65eqeq1d 2048 . 2 (𝑥 = suc 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 suc 𝑦) = ∅))
7 oveq2 5481 . . 3 (𝑥 = 𝐴 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝐴))
87eqeq1d 2048 . 2 (𝑥 = 𝐴 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝐴) = ∅))
9 0elon 4100 . . 3 ∅ ∈ On
10 om0 5999 . . 3 (∅ ∈ On → (∅ ·𝑜 ∅) = ∅)
119, 10ax-mp 7 . 2 (∅ ·𝑜 ∅) = ∅
12 oveq1 5480 . . . 4 ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅))
13 oa0 5998 . . . . 5 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
149, 13ax-mp 7 . . . 4 (∅ +𝑜 ∅) = ∅
1512, 14syl6eq 2088 . . 3 ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅)
16 peano1 4278 . . . . 5 ∅ ∈ ω
17 nnmsuc 6017 . . . . 5 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅))
1816, 17mpan 400 . . . 4 (𝑦 ∈ ω → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅))
1918eqeq1d 2048 . . 3 (𝑦 ∈ ω → ((∅ ·𝑜 suc 𝑦) = ∅ ↔ ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅))
2015, 19syl5ibr 145 . 2 (𝑦 ∈ ω → ((∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 suc 𝑦) = ∅))
212, 4, 6, 8, 11, 20finds 4284 1 (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  c0 3221  Oncon0 4071  suc csuc 4073  ωcom 4274  (class class class)co 5473   +𝑜 coa 5959   ·𝑜 comu 5960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-id 4026  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-1st 5728  df-2nd 5729  df-recs 5881  df-irdg 5918  df-oadd 5966  df-omul 5967
This theorem is referenced by:  nnmcom  6029  nnmord  6049  nnm00  6061  enq0tr  6475  nq0m0r  6497
  Copyright terms: Public domain W3C validator