Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmass GIF version

Theorem nnmass 6094
 Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmass ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Proof of Theorem nnmass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5545 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
2 oveq2 5545 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
32oveq2d 5553 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
41, 3eqeq12d 2068 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
54imbi2d 223 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
6 oveq2 5545 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 ∅))
7 oveq2 5545 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
87oveq2d 5553 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
96, 8eqeq12d 2068 . . . . 5 (𝑥 = ∅ → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅))))
10 oveq2 5545 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
11 oveq2 5545 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
1211oveq2d 5553 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
1310, 12eqeq12d 2068 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
14 oveq2 5545 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦))
15 oveq2 5545 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1615oveq2d 5553 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))
1714, 16eqeq12d 2068 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
18 nnmcl 6088 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)
19 nnm0 6082 . . . . . . 7 ((𝐴 ·𝑜 𝐵) ∈ ω → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
21 nnm0 6082 . . . . . . . 8 (𝐵 ∈ ω → (𝐵 ·𝑜 ∅) = ∅)
2221oveq2d 5553 . . . . . . 7 (𝐵 ∈ ω → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = (𝐴 ·𝑜 ∅))
23 nnm0 6082 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
2422, 23sylan9eqr 2108 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = ∅)
2520, 24eqtr4d 2089 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
26 oveq1 5544 . . . . . . . . 9 (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
27 nnmsuc 6084 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝐵) ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
2818, 27sylan 271 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
29283impa 1108 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
30 nnmsuc 6084 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
31303adant1 931 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3231oveq2d 5553 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
33 nnmcl 6088 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜 𝑦) ∈ ω)
34 nndi 6093 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ω ∧ (𝐵 ·𝑜 𝑦) ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3533, 34syl3an2 1178 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
36353exp 1112 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ∈ ω → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
3736expd 249 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐵 ∈ ω → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3837com34 81 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3938pm2.43d 48 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
40393imp 1107 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
4132, 40eqtrd 2086 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
4229, 41eqeq12d 2068 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) ↔ (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))
4326, 42syl5ibr 149 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
44433exp 1112 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4544com3r 77 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4645impd 246 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))))
479, 13, 17, 25, 46finds2 4349 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
485, 47vtoclga 2634 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
4948expdcom 1345 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
50493imp 1107 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ∧ w3a 894   = wceq 1257   ∈ wcel 1407  ∅c0 3249  suc csuc 4127  ωcom 4338  (class class class)co 5537   +𝑜 coa 6026   ·𝑜 comu 6027 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336 This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-id 4055  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-oadd 6033  df-omul 6034 This theorem is referenced by:  mulasspig  6458  enq0tr  6560  addcmpblnq0  6569  mulcmpblnq0  6570  mulcanenq0ec  6571  distrnq0  6585  addassnq0  6588
 Copyright terms: Public domain W3C validator