![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8210 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
2 | eleq1 2145 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
3 | 1, 2 | mtbiri 633 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
4 | 3 | necon2ai 2303 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 ≠ wne 2249 0cc0 7120 ℕcn 8183 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7206 ax-resscn 7207 ax-1re 7209 ax-addrcl 7212 ax-0lt1 7221 ax-0id 7223 ax-rnegex 7224 ax-pre-ltirr 7227 ax-pre-lttrn 7229 ax-pre-ltadd 7231 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2613 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-xp 4398 df-cnv 4400 df-iota 4918 df-fv 4961 df-ov 5568 df-pnf 7294 df-mnf 7295 df-xr 7296 df-ltxr 7297 df-le 7298 df-inn 8184 |
This theorem is referenced by: nnne0d 8227 divfnzn 8864 qreccl 8885 fzo1fzo0n0 9346 expinnval 9653 expnegap0 9658 hashnncl 9897 dvdsval3 10432 nndivdvds 10434 modmulconst 10460 dvdsdivcl 10483 divalg2 10558 ndvdssub 10562 nndvdslegcd 10589 divgcdz 10595 divgcdnn 10598 gcdzeq 10643 eucalgf 10669 eucalginv 10670 lcmgcdlem 10691 qredeu 10711 cncongr1 10717 cncongr2 10718 divnumden 10806 divdenle 10807 phimullem 10833 hashgcdlem 10835 |
Copyright terms: Public domain | W3C validator |