![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version |
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnne0 8186 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ≠ wne 2249 0cc0 7095 ℕcn 8158 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-1re 7184 ax-addrcl 7187 ax-0lt1 7196 ax-0id 7198 ax-rnegex 7199 ax-pre-ltirr 7202 ax-pre-lttrn 7204 ax-pre-ltadd 7206 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-opab 3860 df-xp 4397 df-cnv 4399 df-iota 4917 df-fv 4960 df-ov 5566 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-inn 8159 |
This theorem is referenced by: flqdiv 9455 modsumfzodifsn 9530 facne0 9813 gcdnncl 10566 gcdeq0 10575 mulgcd 10612 sqgcd 10625 lcmeq0 10660 lcmgcdlem 10666 qredeu 10686 cncongr1 10692 prmind2 10709 divgcdodd 10729 oddpwdclemxy 10754 oddpwdclemodd 10757 divnumden 10781 hashdvds 10804 |
Copyright terms: Public domain | W3C validator |