![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0i | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 8362 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ℕcn 8106 ℕ0cn0 8355 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-n0 8356 |
This theorem is referenced by: 1nn0 8371 2nn0 8372 3nn0 8373 4nn0 8374 5nn0 8375 6nn0 8376 7nn0 8377 8nn0 8378 9nn0 8379 numlt 8582 declei 8593 numlti 8594 |
Copyright terms: Public domain | W3C validator |