ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnq0lem1 GIF version

Theorem nnnq0lem1 7254
Description: Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7257 and mulnnnq0 7258. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
nnnq0lem1 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))))
Distinct variable groups:   𝑧,𝑤,𝑣,𝑢,𝑡,𝑠,𝑞,𝑓,𝑔,,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢,𝑡,𝑠,𝑞,𝑓,𝑔,
Allowed substitution hints:   𝐶(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑞)   𝐷(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑞)

Proof of Theorem nnnq0lem1
StepHypRef Expression
1 enq0er 7243 . . . . . 6 ~Q0 Er (ω × N)
2 erdm 6439 . . . . . 6 ( ~Q0 Er (ω × N) → dom ~Q0 = (ω × N))
31, 2ax-mp 5 . . . . 5 dom ~Q0 = (ω × N)
4 simpll 518 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → 𝐴 ∈ ((ω × N) / ~Q0 ))
5 simplll 522 . . . . . . . 8 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 )
65eleq1d 2208 . . . . . . 7 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → (𝐴 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑤, 𝑣⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
76adantl 275 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝐴 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑤, 𝑣⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
84, 7mpbid 146 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑤, 𝑣⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
9 ecelqsdm 6499 . . . . 5 ((dom ~Q0 = (ω × N) ∧ [⟨𝑤, 𝑣⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → ⟨𝑤, 𝑣⟩ ∈ (ω × N))
103, 8, 9sylancr 410 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑤, 𝑣⟩ ∈ (ω × N))
11 opelxp 4569 . . . 4 (⟨𝑤, 𝑣⟩ ∈ (ω × N) ↔ (𝑤 ∈ ω ∧ 𝑣N))
1210, 11sylib 121 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑤 ∈ ω ∧ 𝑣N))
13 simprll 526 . . . . . . . 8 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → 𝐴 = [⟨𝑠, 𝑓⟩] ~Q0 )
1413eleq1d 2208 . . . . . . 7 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → (𝐴 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑠, 𝑓⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
1514adantl 275 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝐴 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑠, 𝑓⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
164, 15mpbid 146 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑠, 𝑓⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
17 ecelqsdm 6499 . . . . 5 ((dom ~Q0 = (ω × N) ∧ [⟨𝑠, 𝑓⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → ⟨𝑠, 𝑓⟩ ∈ (ω × N))
183, 16, 17sylancr 410 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑠, 𝑓⟩ ∈ (ω × N))
19 opelxp 4569 . . . 4 (⟨𝑠, 𝑓⟩ ∈ (ω × N) ↔ (𝑠 ∈ ω ∧ 𝑓N))
2018, 19sylib 121 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑠 ∈ ω ∧ 𝑓N))
2112, 20jca 304 . 2 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)))
22 simplr 519 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → 𝐵 ∈ ((ω × N) / ~Q0 ))
23 simpllr 523 . . . . . . . 8 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → 𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 )
2423eleq1d 2208 . . . . . . 7 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → (𝐵 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑢, 𝑡⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
2524adantl 275 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝐵 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑢, 𝑡⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
2622, 25mpbid 146 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑢, 𝑡⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
27 ecelqsdm 6499 . . . . 5 ((dom ~Q0 = (ω × N) ∧ [⟨𝑢, 𝑡⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → ⟨𝑢, 𝑡⟩ ∈ (ω × N))
283, 26, 27sylancr 410 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑢, 𝑡⟩ ∈ (ω × N))
29 opelxp 4569 . . . 4 (⟨𝑢, 𝑡⟩ ∈ (ω × N) ↔ (𝑢 ∈ ω ∧ 𝑡N))
3028, 29sylib 121 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑢 ∈ ω ∧ 𝑡N))
31 simprlr 527 . . . . . . . 8 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → 𝐵 = [⟨𝑔, ⟩] ~Q0 )
3231eleq1d 2208 . . . . . . 7 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → (𝐵 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑔, ⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
3332adantl 275 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝐵 ∈ ((ω × N) / ~Q0 ) ↔ [⟨𝑔, ⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
3422, 33mpbid 146 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑔, ⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
35 ecelqsdm 6499 . . . . 5 ((dom ~Q0 = (ω × N) ∧ [⟨𝑔, ⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → ⟨𝑔, ⟩ ∈ (ω × N))
363, 34, 35sylancr 410 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑔, ⟩ ∈ (ω × N))
37 opelxp 4569 . . . 4 (⟨𝑔, ⟩ ∈ (ω × N) ↔ (𝑔 ∈ ω ∧ N))
3836, 37sylib 121 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑔 ∈ ω ∧ N))
3930, 38jca 304 . 2 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N)))
405, 13eqtr3d 2174 . . . . . 6 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝑠, 𝑓⟩] ~Q0 )
4140adantl 275 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝑠, 𝑓⟩] ~Q0 )
421a1i 9 . . . . . 6 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ~Q0 Er (ω × N))
4342, 10erth 6473 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (⟨𝑤, 𝑣⟩ ~Q0𝑠, 𝑓⟩ ↔ [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝑠, 𝑓⟩] ~Q0 ))
4441, 43mpbird 166 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑤, 𝑣⟩ ~Q0𝑠, 𝑓⟩)
45 enq0breq 7244 . . . . 5 (((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) → (⟨𝑤, 𝑣⟩ ~Q0𝑠, 𝑓⟩ ↔ (𝑤 ·o 𝑓) = (𝑣 ·o 𝑠)))
4612, 20, 45syl2anc 408 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (⟨𝑤, 𝑣⟩ ~Q0𝑠, 𝑓⟩ ↔ (𝑤 ·o 𝑓) = (𝑣 ·o 𝑠)))
4744, 46mpbid 146 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑤 ·o 𝑓) = (𝑣 ·o 𝑠))
4823, 31eqtr3d 2174 . . . . . 6 ((((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 )) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝑔, ⟩] ~Q0 )
4948adantl 275 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝑔, ⟩] ~Q0 )
5042, 28erth 6473 . . . . 5 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (⟨𝑢, 𝑡⟩ ~Q0𝑔, ⟩ ↔ [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝑔, ⟩] ~Q0 ))
5149, 50mpbird 166 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ⟨𝑢, 𝑡⟩ ~Q0𝑔, ⟩)
52 enq0breq 7244 . . . . 5 (((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N)) → (⟨𝑢, 𝑡⟩ ~Q0𝑔, ⟩ ↔ (𝑢 ·o ) = (𝑡 ·o 𝑔)))
5330, 38, 52syl2anc 408 . . . 4 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (⟨𝑢, 𝑡⟩ ~Q0𝑔, ⟩ ↔ (𝑢 ·o ) = (𝑡 ·o 𝑔)))
5451, 53mpbid 146 . . 3 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → (𝑢 ·o ) = (𝑡 ·o 𝑔))
5547, 54jca 304 . 2 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔)))
5621, 39, 55jca31 307 1 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  cop 3530   class class class wbr 3929  ωcom 4504   × cxp 4537  dom cdm 4539  (class class class)co 5774   ·o comu 6311   Er wer 6426  [cec 6427   / cqs 6428  Ncnpi 7080   ~Q0 ceq0 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-enq0 7232
This theorem is referenced by:  addnq0mo  7255  mulnq0mo  7256
  Copyright terms: Public domain W3C validator