![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnq | GIF version |
Description: A positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
Ref | Expression |
---|---|
nnq | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssq 8795 | . 2 ⊢ ℕ ⊆ ℚ | |
2 | 1 | sseli 2996 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ℕcn 8106 ℚcq 8785 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-po 4059 df-iso 4060 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-z 8433 df-q 8786 |
This theorem is referenced by: flqdiv 9403 modqmulnn 9424 zmodcl 9426 zmodfz 9428 zmodid2 9434 m1modnnsub1 9452 addmodid 9454 modifeq2int 9468 modaddmodup 9469 modaddmodlo 9470 modsumfzodifsn 9478 addmodlteq 9480 dvdsval3 10344 moddvds 10349 dvdslelemd 10388 dvdsmod 10407 mulmoddvds 10408 divalglemnn 10462 divalgmod 10471 modgcd 10526 |
Copyright terms: Public domain | W3C validator |