Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei GIF version

Theorem nnrei 7999
 Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 7997 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 7 1 𝐴 ∈ ℝ
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1409  ℝcr 6946  ℕcn 7990 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-cnex 7033  ax-resscn 7034  ax-1re 7036  ax-addrcl 7039 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-in 2952  df-ss 2959  df-int 3644  df-inn 7991 This theorem is referenced by:  nncni  8000  nnne0i  8021  10re  8445  numlt  8451  numltc  8452
 Copyright terms: Public domain W3C validator