![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnrp | GIF version |
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8113 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nngt0 8131 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | elrp 8817 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 408 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 class class class wbr 3793 ℝcr 7042 0cc0 7043 < clt 7215 ℕcn 8106 ℝ+crp 8815 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 ax-0lt1 7144 ax-0id 7146 ax-rnegex 7147 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-ltadd 7154 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-opab 3848 df-xp 4377 df-cnv 4379 df-iota 4897 df-fv 4940 df-ov 5546 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-inn 8107 df-rp 8816 |
This theorem is referenced by: nnrpd 8853 nn0ledivnn 8919 adddivflid 9374 divfl0 9378 nnesq 9689 bcrpcl 9777 flodddiv4 10478 isprm6 10670 sqrt2irr 10685 |
Copyright terms: Public domain | W3C validator |