ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq02m GIF version

Theorem nq02m 7266
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
nq02m (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))

Proof of Theorem nq02m
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7243 . 2 (𝐴Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ))
2 2onn 6410 . . . . . . 7 2o ∈ ω
3 1pi 7116 . . . . . . 7 1oN
4 mulnnnq0 7251 . . . . . . 7 (((2o ∈ ω ∧ 1oN) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
52, 3, 4mpanl12 432 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
6 nn2m 6415 . . . . . . . . 9 (𝑧 ∈ ω → (2o ·o 𝑧) = (𝑧 +o 𝑧))
76adantr 274 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (2o ·o 𝑧) = (𝑧 +o 𝑧))
8 pinn 7110 . . . . . . . . . 10 (𝑤N𝑤 ∈ ω)
9 1onn 6409 . . . . . . . . . . . 12 1o ∈ ω
10 nnmcom 6378 . . . . . . . . . . . 12 ((1o ∈ ω ∧ 𝑤 ∈ ω) → (1o ·o 𝑤) = (𝑤 ·o 1o))
119, 10mpan 420 . . . . . . . . . . 11 (𝑤 ∈ ω → (1o ·o 𝑤) = (𝑤 ·o 1o))
12 nnm1 6413 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1311, 12eqtrd 2170 . . . . . . . . . 10 (𝑤 ∈ ω → (1o ·o 𝑤) = 𝑤)
148, 13syl 14 . . . . . . . . 9 (𝑤N → (1o ·o 𝑤) = 𝑤)
1514adantl 275 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (1o ·o 𝑤) = 𝑤)
167, 15opeq12d 3708 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑤N) → ⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩ = ⟨(𝑧 +o 𝑧), 𝑤⟩)
1716eceq1d 6458 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 )
18 nnanq0 7259 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
19183anidm12 1273 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
205, 17, 193eqtrd 2174 . . . . 5 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2120adantr 274 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
22 oveq2 5775 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
23 id 19 . . . . . . 7 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 )
2423, 23oveq12d 5785 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (𝐴 +Q0 𝐴) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2522, 24eqeq12d 2152 . . . . 5 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2625adantl 275 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2721, 26mpbird 166 . . 3 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
2827exlimivv 1868 . 2 (∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
291, 28syl 14 1 (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  cop 3525  ωcom 4499  (class class class)co 5767  1oc1o 6299  2oc2o 6300   +o coa 6303   ·o comu 6304  [cec 6420  Ncnpi 7073   ~Q0 ceq0 7087  Q0cnq0 7088   +Q0 cplq0 7090   ·Q0 cmq0 7091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-enq0 7225  df-nq0 7226  df-plq0 7228  df-mq0 7229
This theorem is referenced by:  prarloclemcalc  7303
  Copyright terms: Public domain W3C validator