![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nq0ex | GIF version |
Description: The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
Ref | Expression |
---|---|
nq0ex | ⊢ Q0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq0 6677 | . 2 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
2 | omex 4342 | . . . 4 ⊢ ω ∈ V | |
3 | niex 6564 | . . . 4 ⊢ N ∈ V | |
4 | 2, 3 | xpex 4481 | . . 3 ⊢ (ω × N) ∈ V |
5 | 4 | qsex 6229 | . 2 ⊢ ((ω × N) / ~Q0 ) ∈ V |
6 | 1, 5 | eqeltri 2152 | 1 ⊢ Q0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 Vcvv 2602 ωcom 4339 × cxp 4369 / cqs 6171 Ncnpi 6524 ~Q0 ceq0 6538 Q0cnq0 6539 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-iinf 4337 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-qs 6178 df-ni 6556 df-nq0 6677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |