ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0a GIF version

Theorem nqnq0a 6609
Description: Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0a ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))

Proof of Theorem nqnq0a
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 6533 . . . 4 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 nqpi 6533 . . . 4 (𝐵Q → ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
31, 2anim12i 325 . . 3 ((𝐴Q𝐵Q) → (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4 ee4anv 1825 . . 3 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) ↔ (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ∃𝑣𝑢((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
53, 4sylibr 141 . 2 ((𝐴Q𝐵Q) → ∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
6 oveq12 5548 . . . . . . 7 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q ) → (𝐴 +Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ))
7 mulclpi 6483 . . . . . . . . . . . . 13 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) ∈ N)
87ad2ant2rl 488 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) ∈ N)
9 mulclpi 6483 . . . . . . . . . . . . 13 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) ∈ N)
109ad2ant2lr 487 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) ∈ N)
11 addpiord 6471 . . . . . . . . . . . 12 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·N 𝑢) +𝑜 (𝑤 ·N 𝑣)))
128, 10, 11syl2anc 397 . . . . . . . . . . 11 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·N 𝑢) +𝑜 (𝑤 ·N 𝑣)))
13 mulpiord 6472 . . . . . . . . . . . . 13 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) = (𝑧 ·𝑜 𝑢))
1413ad2ant2rl 488 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑧 ·N 𝑢) = (𝑧 ·𝑜 𝑢))
15 mulpiord 6472 . . . . . . . . . . . . 13 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) = (𝑤 ·𝑜 𝑣))
1615ad2ant2lr 487 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑣) = (𝑤 ·𝑜 𝑣))
1714, 16oveq12d 5557 . . . . . . . . . . 11 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +𝑜 (𝑤 ·N 𝑣)) = ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))
1812, 17eqtrd 2088 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) = ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))
19 mulpiord 6472 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·𝑜 𝑢))
2019ad2ant2l 485 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) = (𝑤 ·𝑜 𝑢))
2118, 20opeq12d 3584 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩ = ⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩)
2221eceq1d 6172 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 )
23 addpipqqs 6525 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
24 addclpi 6482 . . . . . . . . . . 11 (((𝑧 ·N 𝑢) ∈ N ∧ (𝑤 ·N 𝑣) ∈ N) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
258, 10, 24syl2anc 397 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N)
26 mulclpi 6483 . . . . . . . . . . 11 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
2726ad2ant2l 485 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
28 nqnq0pi 6593 . . . . . . . . . 10 ((((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
2925, 27, 28syl2anc 397 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q )
3023, 29eqtr4d 2091 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = [⟨((𝑧 ·N 𝑢) +N (𝑤 ·N 𝑣)), (𝑤 ·N 𝑢)⟩] ~Q0 )
31 pinn 6464 . . . . . . . . . 10 (𝑧N𝑧 ∈ ω)
3231anim1i 327 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ∈ ω ∧ 𝑤N))
33 pinn 6464 . . . . . . . . . 10 (𝑣N𝑣 ∈ ω)
3433anim1i 327 . . . . . . . . 9 ((𝑣N𝑢N) → (𝑣 ∈ ω ∧ 𝑢N))
35 addnnnq0 6604 . . . . . . . . 9 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 )
3632, 34, 35syl2an 277 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 )
3722, 30, 363eqtr4d 2098 . . . . . . 7 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑣, 𝑢⟩] ~Q ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
386, 37sylan9eqr 2110 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
39 nqnq0pi 6593 . . . . . . . . . . 11 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
4039adantr 265 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑧, 𝑤⟩] ~Q0 = [⟨𝑧, 𝑤⟩] ~Q )
4140eqeq2d 2067 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
42 nqnq0pi 6593 . . . . . . . . . . 11 ((𝑣N𝑢N) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
4342adantl 266 . . . . . . . . . 10 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → [⟨𝑣, 𝑢⟩] ~Q0 = [⟨𝑣, 𝑢⟩] ~Q )
4443eqeq2d 2067 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝐵 = [⟨𝑣, 𝑢⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q ))
4541, 44anbi12d 450 . . . . . . . 8 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
4645pm5.32i 435 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )))
47 oveq12 5548 . . . . . . . 8 ((𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4847adantl 266 . . . . . . 7 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐵 = [⟨𝑣, 𝑢⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4946, 48sylbir 129 . . . . . 6 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q0 𝐵) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
5038, 49eqtr4d 2091 . . . . 5 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝐴 = [⟨𝑧, 𝑤⟩] ~Q𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5150an4s 530 . . . 4 ((((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5251exlimivv 1792 . . 3 (∃𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
5352exlimivv 1792 . 2 (∃𝑧𝑤𝑣𝑢(((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) ∧ ((𝑣N𝑢N) ∧ 𝐵 = [⟨𝑣, 𝑢⟩] ~Q )) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
545, 53syl 14 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wex 1397  wcel 1409  cop 3405  ωcom 4340  (class class class)co 5539   +𝑜 coa 6028   ·𝑜 comu 6029  [cec 6134  Ncnpi 6427   +N cpli 6428   ·N cmi 6429   ~Q ceq 6434  Qcnq 6435   +Q cplq 6437   ~Q0 ceq0 6441   +Q0 cplq0 6444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-plpq 6499  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-enq0 6579  df-nq0 6580  df-plq0 6582
This theorem is referenced by:  prarloclemlo  6649  prarloclemcalc  6657
  Copyright terms: Public domain W3C validator