ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq GIF version

Theorem nqpnq0nq 6782
Description: A positive fraction plus a non-negative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)

Proof of Theorem nqpnq0nq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 6707 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nq0nn 6771 . . . 4 (𝐵Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ))
31, 2anim12i 331 . . 3 ((𝐴Q𝐵Q0) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
4 ee4anv 1852 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
53, 4sylibr 132 . 2 ((𝐴Q𝐵Q0) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
6 oveq12 5574 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
76ad2ant2l 492 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
8 nqnq0pi 6767 . . . . . . . . . 10 ((𝑥N𝑦N) → [⟨𝑥, 𝑦⟩] ~Q0 = [⟨𝑥, 𝑦⟩] ~Q )
98oveq1d 5580 . . . . . . . . 9 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
109adantr 270 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
11 pinn 6638 . . . . . . . . 9 (𝑥N𝑥 ∈ ω)
12 addnnnq0 6778 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1311, 12sylanl1 394 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1410, 13eqtr3d 2117 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
1514ad2ant2r 493 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
167, 15eqtrd 2115 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
17 pinn 6638 . . . . . . . . . . . . . 14 (𝑦N𝑦 ∈ ω)
18 nnmcl 6147 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
1917, 18sylan 277 . . . . . . . . . . . . 13 ((𝑦N𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
2019ad2ant2lr 494 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·𝑜 𝑧) ∈ ω)
21 mulpiord 6646 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑥 ·𝑜 𝑤))
22 mulclpi 6657 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
2321, 22eqeltrrd 2160 . . . . . . . . . . . . 13 ((𝑥N𝑤N) → (𝑥 ·𝑜 𝑤) ∈ N)
2423ad2ant2rl 495 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·𝑜 𝑤) ∈ N)
25 pinn 6638 . . . . . . . . . . . . 13 ((𝑥 ·𝑜 𝑤) ∈ N → (𝑥 ·𝑜 𝑤) ∈ ω)
26 nnacom 6150 . . . . . . . . . . . . 13 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ ω) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
2725, 26sylan2 280 . . . . . . . . . . . 12 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ N) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
2820, 24, 27syl2anc 403 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) = ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)))
29 nnppipi 6672 . . . . . . . . . . . 12 (((𝑦 ·𝑜 𝑧) ∈ ω ∧ (𝑥 ·𝑜 𝑤) ∈ N) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) ∈ N)
3020, 24, 29syl2anc 403 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·𝑜 𝑧) +𝑜 (𝑥 ·𝑜 𝑤)) ∈ N)
3128, 30eqeltrrd 2160 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N)
32 mulpiord 6646 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·𝑜 𝑤))
33 mulclpi 6657 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3432, 33eqeltrrd 2160 . . . . . . . . . . 11 ((𝑦N𝑤N) → (𝑦 ·𝑜 𝑤) ∈ N)
3534ad2ant2l 492 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·𝑜 𝑤) ∈ N)
36 opelxpi 4423 . . . . . . . . . 10 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → ⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N))
3731, 35, 36syl2anc 403 . . . . . . . . 9 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N))
38 enqex 6689 . . . . . . . . . 10 ~Q ∈ V
3938ecelqsi 6249 . . . . . . . . 9 (⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
4037, 39syl 14 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 6677 . . . . . . . 8 Q = ((N × N) / ~Q )
4240, 41syl6eleqr 2176 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ)
43 nqnq0pi 6767 . . . . . . . . 9 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q )
4443eleq1d 2151 . . . . . . . 8 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ N ∧ (𝑦 ·𝑜 𝑤) ∈ N) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ))
4531, 35, 44syl2anc 403 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~QQ))
4642, 45mpbird 165 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q)
4746ad2ant2r 493 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0Q)
4816, 47eqeltrd 2159 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
4948exlimivv 1819 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
5049exlimivv 1819 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
515, 50syl 14 1 ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  cop 3420  ωcom 4360   × cxp 4390  (class class class)co 5565   +𝑜 coa 6084   ·𝑜 comu 6085  [cec 6193   / cqs 6194  Ncnpi 6601   ·N cmi 6603   ~Q ceq 6608  Qcnq 6609   ~Q0 ceq0 6615  Q0cnq0 6616   +Q0 cplq0 6618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-irdg 6041  df-oadd 6091  df-omul 6092  df-er 6195  df-ec 6197  df-qs 6201  df-ni 6633  df-mi 6635  df-enq 6676  df-nqqs 6677  df-enq0 6753  df-nq0 6754  df-plq0 6756
This theorem is referenced by:  prarloclemcalc  6831
  Copyright terms: Public domain W3C validator