ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc GIF version

Theorem nqprloc 6849
Description: A cut produced from a rational is located. Lemma for nqprlu 6851. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 6700 . . . . . . 7 ((𝑞Q𝐴Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
21ancoms 264 . . . . . 6 ((𝐴Q𝑞Q) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
32ad2antrr 472 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞))
4 vex 2613 . . . . . . . . . 10 𝑞 ∈ V
5 breq1 3808 . . . . . . . . . 10 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2746 . . . . . . . . 9 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
76biimpri 131 . . . . . . . 8 (𝑞 <Q 𝐴𝑞 ∈ {𝑥𝑥 <Q 𝐴})
87orcd 685 . . . . . . 7 (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
98a1i 9 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 <Q 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
10 simpr 108 . . . . . . . 8 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
11 breq1 3808 . . . . . . . 8 (𝑞 = 𝐴 → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210, 11syl5ibcom 153 . . . . . . 7 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴𝐴 <Q 𝑟))
13 vex 2613 . . . . . . . . 9 𝑟 ∈ V
14 breq2 3809 . . . . . . . . 9 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
1513, 14elab 2746 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
16 olc 665 . . . . . . . 8 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1715, 16sylbir 133 . . . . . . 7 (𝐴 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
1812, 17syl6 33 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 = 𝐴 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
19 ltsonq 6702 . . . . . . . . . 10 <Q Or Q
20 ltrelnq 6669 . . . . . . . . . 10 <Q ⊆ (Q × Q)
2119, 20sotri 4770 . . . . . . . . 9 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → 𝐴 <Q 𝑟)
2221, 17syl 14 . . . . . . . 8 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2322expcom 114 . . . . . . 7 (𝑞 <Q 𝑟 → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2423adantl 271 . . . . . 6 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝐴 <Q 𝑞 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
259, 18, 243jaod 1236 . . . . 5 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → ((𝑞 <Q 𝐴𝑞 = 𝐴𝐴 <Q 𝑞) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
263, 25mpd 13 . . . 4 ((((𝐴Q𝑞Q) ∧ 𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2726ex 113 . . 3 (((𝐴Q𝑞Q) ∧ 𝑟Q) → (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2827ralrimiva 2439 . 2 ((𝐴Q𝑞Q) → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
2928ralrimiva 2439 1 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662  w3o 919   = wceq 1285  wcel 1434  {cab 2069  wral 2353   class class class wbr 3805  Qcnq 6584   <Q cltq 6589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-mi 6610  df-lti 6611  df-enq 6651  df-nqqs 6652  df-ltnqqs 6657
This theorem is referenced by:  nqprxx  6850
  Copyright terms: Public domain W3C validator