ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprlu GIF version

Theorem nqprlu 6703
Description: The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
Assertion
Ref Expression
nqprlu (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴

Proof of Theorem nqprlu
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 3796 . . . . 5 (𝑙 = 𝑎 → (𝐴 <Q 𝑙𝐴 <Q 𝑎))
21cbvabv 2177 . . . 4 {𝑙𝐴 <Q 𝑙} = {𝑎𝐴 <Q 𝑎}
3 breq2 3796 . . . . 5 (𝑢 = 𝑎 → (𝐴 <Q 𝑢𝐴 <Q 𝑎))
43cbvabv 2177 . . . 4 {𝑢𝐴 <Q 𝑢} = {𝑎𝐴 <Q 𝑎}
52, 4eqtr4i 2079 . . 3 {𝑙𝐴 <Q 𝑙} = {𝑢𝐴 <Q 𝑢}
65opeq2i 3581 . 2 ⟨{𝑙𝑙 <Q 𝐴}, {𝑙𝐴 <Q 𝑙}⟩ = ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩
7 nqprxx 6702 . 2 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑙𝐴 <Q 𝑙}⟩ ∈ P)
86, 7syl5eqelr 2141 1 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  {cab 2042  cop 3406   class class class wbr 3792  Qcnq 6436   <Q cltq 6441  Pcnp 6447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-inp 6622
This theorem is referenced by:  recnnpr  6704  nqprl  6707  nqpru  6708  nnprlu  6709  1pr  6710  addnqprlemrl  6713  addnqprlemru  6714  addnqprlemfl  6715  addnqprlemfu  6716  addnqpr  6717  mulnqprlemrl  6729  mulnqprlemru  6730  mulnqprlemfl  6731  mulnqprlemfu  6732  mulnqpr  6733  ltnqpr  6749  ltnqpri  6750  prplnqu  6776  caucvgprlemcanl  6800  cauappcvgprlemladdfu  6810  cauappcvgprlemladdfl  6811  cauappcvgprlemladdru  6812  cauappcvgprlemladdrl  6813  cauappcvgprlemladd  6814  cauappcvgprlem1  6815  cauappcvgprlem2  6816  caucvgprlemladdfu  6833  caucvgprlemladdrl  6834  caucvgprlem1  6835  caucvgprlem2  6836  caucvgprprlemnkltj  6845  caucvgprprlemnkeqj  6846  caucvgprprlemmu  6851  caucvgprprlemopu  6855  caucvgprprlemloc  6859  caucvgprprlemexbt  6862  caucvgprprlem1  6865  caucvgprprlem2  6866  ltrennb  6988
  Copyright terms: Public domain W3C validator