![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprm | GIF version |
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 6799. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprm | ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 6664 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q 𝐴) | |
2 | vex 2605 | . . . . 5 ⊢ 𝑞 ∈ V | |
3 | breq1 3796 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
4 | 2, 3 | elab 2739 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
5 | 4 | rexbii 2374 | . . 3 ⊢ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑞 ∈ Q 𝑞 <Q 𝐴) |
6 | 1, 5 | sylibr 132 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) |
7 | archnqq 6669 | . . . . 5 ⊢ (𝐴 ∈ Q → ∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) | |
8 | df-rex 2355 | . . . . 5 ⊢ (∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ↔ ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) | |
9 | 7, 8 | sylib 120 | . . . 4 ⊢ (𝐴 ∈ Q → ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) |
10 | 1pi 6567 | . . . . . . . 8 ⊢ 1𝑜 ∈ N | |
11 | opelxpi 4402 | . . . . . . . . 9 ⊢ ((𝑛 ∈ N ∧ 1𝑜 ∈ N) → 〈𝑛, 1𝑜〉 ∈ (N × N)) | |
12 | enqex 6612 | . . . . . . . . . 10 ⊢ ~Q ∈ V | |
13 | 12 | ecelqsi 6226 | . . . . . . . . 9 ⊢ (〈𝑛, 1𝑜〉 ∈ (N × N) → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
14 | 11, 13 | syl 14 | . . . . . . . 8 ⊢ ((𝑛 ∈ N ∧ 1𝑜 ∈ N) → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
15 | 10, 14 | mpan2 416 | . . . . . . 7 ⊢ (𝑛 ∈ N → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
16 | df-nqqs 6600 | . . . . . . 7 ⊢ Q = ((N × N) / ~Q ) | |
17 | 15, 16 | syl6eleqr 2173 | . . . . . 6 ⊢ (𝑛 ∈ N → [〈𝑛, 1𝑜〉] ~Q ∈ Q) |
18 | breq2 3797 | . . . . . . 7 ⊢ (𝑟 = [〈𝑛, 1𝑜〉] ~Q → (𝐴 <Q 𝑟 ↔ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) | |
19 | 18 | rspcev 2702 | . . . . . 6 ⊢ (([〈𝑛, 1𝑜〉] ~Q ∈ Q ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
20 | 17, 19 | sylan 277 | . . . . 5 ⊢ ((𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
21 | 20 | exlimiv 1530 | . . . 4 ⊢ (∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
22 | 9, 21 | syl 14 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
23 | vex 2605 | . . . . 5 ⊢ 𝑟 ∈ V | |
24 | breq2 3797 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
25 | 23, 24 | elab 2739 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
26 | 25 | rexbii 2374 | . . 3 ⊢ (∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
27 | 22, 26 | sylibr 132 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
28 | 6, 27 | jca 300 | 1 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1422 ∈ wcel 1434 {cab 2068 ∃wrex 2350 〈cop 3409 class class class wbr 3793 × cxp 4369 1𝑜c1o 6058 [cec 6170 / cqs 6171 Ncnpi 6524 ~Q ceq 6531 Qcnq 6532 <Q cltq 6537 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-eprel 4052 df-id 4056 df-iord 4129 df-on 4131 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-irdg 6019 df-1o 6065 df-oadd 6069 df-omul 6070 df-er 6172 df-ec 6174 df-qs 6178 df-ni 6556 df-pli 6557 df-mi 6558 df-lti 6559 df-plpq 6596 df-mpq 6597 df-enq 6599 df-nqqs 6600 df-plqqs 6601 df-mqqs 6602 df-1nqqs 6603 df-rq 6604 df-ltnqqs 6605 |
This theorem is referenced by: nqprxx 6798 |
Copyright terms: Public domain | W3C validator |