ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprrnd GIF version

Theorem nqprrnd 6669
Description: A cut produced from a rational is rounded. Lemma for nqprlu 6673. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprrnd (𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprrnd
StepHypRef Expression
1 ltbtwnnqq 6541 . . . . . 6 (𝐴 <Q 𝑟 ↔ ∃𝑞Q (𝐴 <Q 𝑞𝑞 <Q 𝑟))
2 ancom 257 . . . . . . 7 ((𝐴 <Q 𝑞𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟𝐴 <Q 𝑞))
32rexbii 2346 . . . . . 6 (∃𝑞Q (𝐴 <Q 𝑞𝑞 <Q 𝑟) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝐴 <Q 𝑞))
41, 3bitri 177 . . . . 5 (𝐴 <Q 𝑟 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝐴 <Q 𝑞))
5 vex 2575 . . . . . 6 𝑟 ∈ V
6 breq2 3793 . . . . . 6 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
75, 6elab 2707 . . . . 5 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
8 vex 2575 . . . . . . . 8 𝑞 ∈ V
9 breq2 3793 . . . . . . . 8 (𝑥 = 𝑞 → (𝐴 <Q 𝑥𝐴 <Q 𝑞))
108, 9elab 2707 . . . . . . 7 (𝑞 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞)
1110anbi2i 438 . . . . . 6 ((𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟𝐴 <Q 𝑞))
1211rexbii 2346 . . . . 5 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝐴 <Q 𝑞))
134, 7, 123bitr4i 205 . . . 4 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
1413rgenw 2391 . . 3 𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
1514a1i 9 . 2 (𝐴Q → ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥})))
16 ltbtwnnqq 6541 . . . 4 (𝑞 <Q 𝐴 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝐴))
17 breq1 3792 . . . . 5 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
188, 17elab 2707 . . . 4 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
19 breq1 3792 . . . . . . 7 (𝑥 = 𝑟 → (𝑥 <Q 𝐴𝑟 <Q 𝐴))
205, 19elab 2707 . . . . . 6 (𝑟 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴)
2120anbi2i 438 . . . . 5 ((𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟𝑟 <Q 𝐴))
2221rexbii 2346 . . . 4 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴}) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝐴))
2316, 18, 223bitr4i 205 . . 3 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴}))
2423rgenw 2391 . 2 𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴}))
2515, 24jctil 299 1 (𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1407  {cab 2040  wral 2321  wrex 2322   class class class wbr 3789  Qcnq 6406   <Q cltq 6411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479
This theorem is referenced by:  nqprxx  6672
  Copyright terms: Public domain W3C validator