ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx GIF version

Theorem nqprxx 6798
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx (𝐴Q → ⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqprxx
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 6794 . . 3 (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2 ltrelnq 6617 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4418 . . . . . 6 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
43simpld 110 . . . . 5 (𝑥 <Q 𝐴𝑥Q)
54abssi 3070 . . . 4 {𝑥𝑥 <Q 𝐴} ⊆ Q
62brel 4418 . . . . . 6 (𝐴 <Q 𝑥 → (𝐴Q𝑥Q))
76simprd 112 . . . . 5 (𝐴 <Q 𝑥𝑥Q)
87abssi 3070 . . . 4 {𝑥𝐴 <Q 𝑥} ⊆ Q
95, 8pm3.2i 266 . . 3 ({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q)
101, 9jctil 305 . 2 (𝐴Q → (({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
11 nqprrnd 6795 . . 3 (𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
12 nqprdisj 6796 . . 3 (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
13 nqprloc 6797 . . 3 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
1411, 12, 133jca 1119 . 2 (𝐴Q → ((∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))) ∧ ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))))
15 elinp 6726 . 2 (⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P ↔ ((({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})) ∧ ((∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))) ∧ ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))))
1610, 14, 15sylanbrc 408 1 (𝐴Q → ⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 920  wcel 1434  {cab 2068  wral 2349  wrex 2350  wss 2974  cop 3409   class class class wbr 3793  Qcnq 6532   <Q cltq 6537  Pcnp 6543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-inp 6718
This theorem is referenced by:  nqprlu  6799
  Copyright terms: Public domain W3C validator