ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrexrmo GIF version

Theorem nrexrmo 2543
Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
nrexrmo (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem nrexrmo
StepHypRef Expression
1 pm2.21 557 . 2 (¬ ∃𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
2 rmo5 2542 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
31, 2sylibr 141 1 (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wrex 2324  ∃!wreu 2325  ∃*wrmo 2326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in2 555
This theorem depends on definitions:  df-bi 114  df-mo 1920  df-rex 2329  df-reu 2330  df-rmo 2331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator