ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul1c GIF version

Theorem nummul1c 8474
Description: The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul1c.8 ((𝐴 · 𝑃) + 𝐸) = 𝐶
nummul1c.9 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul1c (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul1c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 8438 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2126 . . 3 𝑁 ∈ ℕ0
7 nummul1c.2 . . 3 𝑃 ∈ ℕ0
86, 7num0u 8436 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
9 0nn0 8253 . . 3 0 ∈ ℕ0
102, 9num0h 8437 . . 3 0 = ((𝑇 · 0) + 0)
11 nummul1c.6 . . 3 𝐷 ∈ ℕ0
12 nummul1c.7 . . 3 𝐸 ∈ ℕ0
1312nn0cni 8250 . . . . . 6 𝐸 ∈ ℂ
1413addid2i 7216 . . . . 5 (0 + 𝐸) = 𝐸
1514oveq2i 5550 . . . 4 ((𝐴 · 𝑃) + (0 + 𝐸)) = ((𝐴 · 𝑃) + 𝐸)
16 nummul1c.8 . . . 4 ((𝐴 · 𝑃) + 𝐸) = 𝐶
1715, 16eqtri 2076 . . 3 ((𝐴 · 𝑃) + (0 + 𝐸)) = 𝐶
184, 7num0u 8436 . . . 4 (𝐵 · 𝑃) = ((𝐵 · 𝑃) + 0)
19 nummul1c.9 . . . 4 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
2018, 19eqtr3i 2078 . . 3 ((𝐵 · 𝑃) + 0) = ((𝑇 · 𝐸) + 𝐷)
212, 3, 4, 9, 9, 1, 10, 7, 11, 12, 17, 20nummac 8470 . 2 ((𝑁 · 𝑃) + 0) = ((𝑇 · 𝐶) + 𝐷)
228, 21eqtri 2076 1 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1259  wcel 1409  (class class class)co 5539  0cc0 6946   + caddc 6949   · cmul 6951  0cn0 8238
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-sub 7246  df-inn 7990  df-n0 8239
This theorem is referenced by:  nummul2c  8475  decmul1  8489  decmul1c  8490
  Copyright terms: Public domain W3C validator