![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numnncl | GIF version |
Description: Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numnncl.1 | ⊢ 𝑇 ∈ ℕ0 |
numnncl.2 | ⊢ 𝐴 ∈ ℕ0 |
numnncl.3 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
numnncl | ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numnncl.1 | . . 3 ⊢ 𝑇 ∈ ℕ0 | |
2 | numnncl.2 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | nn0mulcli 8463 | . 2 ⊢ (𝑇 · 𝐴) ∈ ℕ0 |
4 | numnncl.3 | . 2 ⊢ 𝐵 ∈ ℕ | |
5 | nn0nnaddcl 8456 | . 2 ⊢ (((𝑇 · 𝐴) ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑇 · 𝐴) + 𝐵) ∈ ℕ) | |
6 | 3, 4, 5 | mp2an 417 | 1 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 (class class class)co 5564 + caddc 7116 · cmul 7118 ℕcn 8176 ℕ0cn0 8425 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-cnre 7219 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-sub 7418 df-inn 8177 df-n0 8426 |
This theorem is referenced by: decnncl 8647 |
Copyright terms: Public domain | W3C validator |