ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6074
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suceloni 4254 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6073 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
31, 2sylan2 274 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
4 df-suc 4135 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3697 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥))
64, 5ax-mp 7 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥)
7 iunxun 3762 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
86, 7eqtri 2076 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
9 oveq2 5547 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵))
10 suceq 4166 . . . . . . . . . . 11 ((𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵) → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1211iunxsng 3759 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1312uneq2d 3124 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥)) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
148, 13syl5eq 2100 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1514uneq2d 3124 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
1615adantl 266 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
173, 16eqtrd 2088 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
18 unass 3127 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1917, 18syl6eqr 2106 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
20 oav2 6073 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
2120uneq1d 3123 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
2219, 21eqtr4d 2091 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)))
23 sssucid 4179 . . 3 (𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵)
24 ssequn1 3140 . . 3 ((𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵) ↔ ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵))
2523, 24mpbi 137 . 2 ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵)
2622, 25syl6eq 2104 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  cun 2942  wss 2944  {csn 3402   ciun 3684  Oncon0 4127  suc csuc 4129  (class class class)co 5539   +𝑜 coa 6028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035
This theorem is referenced by:  onasuc  6076  nnaordi  6111
  Copyright terms: Public domain W3C validator