ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav2 GIF version

Theorem oav2 6073
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
Assertion
Ref Expression
oav2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oav2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6054 . . 3 (𝑦 ∈ V ↦ suc 𝑦) Fn V
2 rdgival 5999 . . 3 (((𝑦 ∈ V ↦ suc 𝑦) Fn V ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
31, 2mp3an1 1230 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
4 oav 6064 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵))
5 onelon 4148 . . . . . 6 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6 vex 2577 . . . . . . . . . 10 𝑥 ∈ V
7 oaexg 6058 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ V) → (𝐴 +𝑜 𝑥) ∈ V)
86, 7mpan2 409 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 +𝑜 𝑥) ∈ V)
9 sucexg 4251 . . . . . . . . . 10 ((𝐴 +𝑜 𝑥) ∈ V → suc (𝐴 +𝑜 𝑥) ∈ V)
108, 9syl 14 . . . . . . . . 9 (𝐴 ∈ On → suc (𝐴 +𝑜 𝑥) ∈ V)
11 suceq 4166 . . . . . . . . . 10 (𝑦 = (𝐴 +𝑜 𝑥) → suc 𝑦 = suc (𝐴 +𝑜 𝑥))
12 eqid 2056 . . . . . . . . . 10 (𝑦 ∈ V ↦ suc 𝑦) = (𝑦 ∈ V ↦ suc 𝑦)
1311, 12fvmptg 5275 . . . . . . . . 9 (((𝐴 +𝑜 𝑥) ∈ V ∧ suc (𝐴 +𝑜 𝑥) ∈ V) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
148, 10, 13syl2anc 397 . . . . . . . 8 (𝐴 ∈ On → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
1514adantr 265 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
16 oav 6064 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +𝑜 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
1716fveq2d 5209 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
1815, 17eqtr3d 2090 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
195, 18sylan2 274 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2019anassrs 386 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2120iuneq2dv 3705 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2221uneq2d 3124 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
233, 4, 223eqtr4d 2098 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  Vcvv 2574  cun 2942   ciun 3684  cmpt 3845  Oncon0 4127  suc csuc 4129   Fn wfn 4924  cfv 4929  (class class class)co 5539  reccrdg 5986   +𝑜 coa 6028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035
This theorem is referenced by:  oasuc  6074
  Copyright terms: Public domain W3C validator