![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oaword1 | GIF version |
Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
oaword1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +𝑜 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa0 6101 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴) | |
2 | 1 | adantr 270 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 ∅) = 𝐴) |
3 | 0ss 3289 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
4 | 0elon 4155 | . . . 4 ⊢ ∅ ∈ On | |
5 | oawordi 6113 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐴 +𝑜 𝐵))) | |
6 | 5 | 3com13 1144 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ∅ ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐴 +𝑜 𝐵))) |
7 | 4, 6 | mp3an3 1258 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +𝑜 ∅) ⊆ (𝐴 +𝑜 𝐵))) |
8 | 3, 7 | mpi 15 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 ∅) ⊆ (𝐴 +𝑜 𝐵)) |
9 | 2, 8 | eqsstr3d 3035 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +𝑜 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 ⊆ wss 2974 ∅c0 3258 Oncon0 4126 (class class class)co 5543 +𝑜 coa 6062 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-iord 4129 df-on 4131 df-suc 4134 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-recs 5954 df-irdg 6019 df-oadd 6069 |
This theorem is referenced by: omsuc 6116 nnaword1 6152 |
Copyright terms: Public domain | W3C validator |