![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oawordriexmid | GIF version |
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6133. (Contributed by Jim Kingdon, 15-May-2022.) |
Ref | Expression |
---|---|
oawordriexmid.1 | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) |
Ref | Expression |
---|---|
oawordriexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6092 | . . . . 5 ⊢ 1𝑜 ∈ On | |
2 | oawordriexmid.1 | . . . . . . . 8 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) | |
3 | 2 | 3expa 1139 | . . . . . . 7 ⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) |
4 | 3 | expcom 114 | . . . . . 6 ⊢ (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)))) |
5 | 4 | rgen 2421 | . . . . 5 ⊢ ∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) |
6 | oveq2 5571 | . . . . . . . . 9 ⊢ (𝑐 = 1𝑜 → (𝑎 +𝑜 𝑐) = (𝑎 +𝑜 1𝑜)) | |
7 | oveq2 5571 | . . . . . . . . 9 ⊢ (𝑐 = 1𝑜 → (𝑏 +𝑜 𝑐) = (𝑏 +𝑜 1𝑜)) | |
8 | 6, 7 | sseq12d 3037 | . . . . . . . 8 ⊢ (𝑐 = 1𝑜 → ((𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐) ↔ (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜))) |
9 | 8 | imbi2d 228 | . . . . . . 7 ⊢ (𝑐 = 1𝑜 → ((𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)) ↔ (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜)))) |
10 | 9 | imbi2d 228 | . . . . . 6 ⊢ (𝑐 = 1𝑜 → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜))))) |
11 | 10 | rspcv 2706 | . . . . 5 ⊢ (1𝑜 ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜))))) |
12 | 1, 5, 11 | mp2 16 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜))) |
13 | oa1suc 6131 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑎 +𝑜 1𝑜) = suc 𝑎) | |
14 | 13 | adantr 270 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +𝑜 1𝑜) = suc 𝑎) |
15 | oa1suc 6131 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑏 +𝑜 1𝑜) = suc 𝑏) | |
16 | 15 | adantl 271 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +𝑜 1𝑜) = suc 𝑏) |
17 | 14, 16 | sseq12d 3037 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜) ↔ suc 𝑎 ⊆ suc 𝑏)) |
18 | 12, 17 | sylibd 147 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
19 | 18 | rgen2a 2422 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏) |
20 | 19 | onsucsssucexmid 4298 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 662 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∀wral 2353 ⊆ wss 2982 Oncon0 4146 suc csuc 4148 (class class class)co 5563 1𝑜c1o 6078 +𝑜 coa 6082 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-iord 4149 df-on 4151 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-irdg 6039 df-1o 6085 df-oadd 6089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |