![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oei0 | GIF version |
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oei0 | ⊢ (𝐴 ∈ On → (𝐴 ↑𝑜 ∅) = 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4155 | . . 3 ⊢ ∅ ∈ On | |
2 | oeiv 6100 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ↑𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅)) | |
3 | 1, 2 | mpan2 416 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ↑𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅)) |
4 | 1on 6072 | . . 3 ⊢ 1𝑜 ∈ On | |
5 | rdg0g 6037 | . . 3 ⊢ (1𝑜 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜) | |
6 | 4, 5 | ax-mp 7 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜 |
7 | 3, 6 | syl6eq 2130 | 1 ⊢ (𝐴 ∈ On → (𝐴 ↑𝑜 ∅) = 1𝑜) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 Vcvv 2602 ∅c0 3258 ↦ cmpt 3847 Oncon0 4126 ‘cfv 4932 (class class class)co 5543 reccrdg 6018 1𝑜c1o 6058 ·𝑜 comu 6063 ↑𝑜 coei 6064 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-iord 4129 df-on 4131 df-suc 4134 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-irdg 6019 df-1o 6065 df-oadd 6069 df-omul 6070 df-oexpi 6071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |