ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oei0 GIF version

Theorem oei0 6103
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oei0 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)

Proof of Theorem oei0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 4155 . . 3 ∅ ∈ On
2 oeiv 6100 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅))
31, 2mpan2 416 . 2 (𝐴 ∈ On → (𝐴𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅))
4 1on 6072 . . 3 1𝑜 ∈ On
5 rdg0g 6037 . . 3 (1𝑜 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜)
64, 5ax-mp 7 . 2 (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜
73, 6syl6eq 2130 1 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  Vcvv 2602  c0 3258  cmpt 3847  Oncon0 4126  cfv 4932  (class class class)co 5543  reccrdg 6018  1𝑜c1o 6058   ·𝑜 comu 6063  𝑜 coei 6064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-oadd 6069  df-omul 6070  df-oexpi 6071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator