ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc12 GIF version

Theorem ofc12 6002
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1 (𝜑𝐴𝑉)
ofc12.2 (𝜑𝐵𝑊)
ofc12.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofc12 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofc12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3 (𝜑𝐴𝑉)
2 ofc12.2 . . . 4 (𝜑𝐵𝑊)
32adantr 274 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
4 ofc12.3 . . . 4 (𝜑𝐶𝑋)
54adantr 274 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑋)
6 fconstmpt 4586 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
76a1i 9 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
8 fconstmpt 4586 . . . 4 (𝐴 × {𝐶}) = (𝑥𝐴𝐶)
98a1i 9 . . 3 (𝜑 → (𝐴 × {𝐶}) = (𝑥𝐴𝐶))
101, 3, 5, 7, 9offval2 5997 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
11 fconstmpt 4586 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
1210, 11syl6eqr 2190 1 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  {csn 3527  cmpt 3989   × cxp 4537  (class class class)co 5774  𝑓 cof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator