![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ofres | GIF version |
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ofres.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofres.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
ofres.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofres.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofres.5 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
ofres | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofres.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofres.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | ofres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofres.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | ofres.5 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
6 | eqidd 2084 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2084 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | offval 5770 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
9 | inss1 3202 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
10 | 5, 9 | eqsstr3i 3039 | . . . 4 ⊢ 𝐶 ⊆ 𝐴 |
11 | fnssres 5063 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
12 | 1, 10, 11 | sylancl 404 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
13 | inss2 3203 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
14 | 5, 13 | eqsstr3i 3039 | . . . 4 ⊢ 𝐶 ⊆ 𝐵 |
15 | fnssres 5063 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐺 ↾ 𝐶) Fn 𝐶) | |
16 | 2, 14, 15 | sylancl 404 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐶) Fn 𝐶) |
17 | ssexg 3937 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
18 | 10, 3, 17 | sylancr 405 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
19 | inidm 3191 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
20 | fvres 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
21 | 20 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
22 | fvres 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) | |
23 | 22 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) |
24 | 12, 16, 18, 18, 19, 21, 23 | offval 5770 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶)) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
25 | 8, 24 | eqtr4d 2118 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 Vcvv 2610 ∩ cin 2981 ⊆ wss 2982 ↦ cmpt 3859 ↾ cres 4393 Fn wfn 4947 ‘cfv 4952 (class class class)co 5563 ∘𝑓 cof 5761 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-setind 4308 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-of 5763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |