ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval GIF version

Theorem ofrfval 5751
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 5415 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 403 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 5415 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 403 . . 3 (𝜑𝐺 ∈ V)
9 dmeq 4563 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
10 dmeq 4563 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
119, 10ineqan12d 3176 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
12 fveq1 5208 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 5208 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13breqan12d 3808 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1511, 14raleqbidv 2562 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
16 df-ofr 5744 . . . 4 𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
1715, 16brabga 4027 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
184, 8, 17syl2anc 403 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
19 fndm 5029 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
201, 19syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
21 fndm 5029 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
225, 21syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
2320, 22ineq12d 3175 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
24 offval.5 . . . 4 (𝐴𝐵) = 𝑆
2523, 24syl6eq 2130 . . 3 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
2625raleqdv 2556 . 2 (𝜑 → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
27 inss1 3193 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
2824, 27eqsstr3i 3031 . . . . . 6 𝑆𝐴
2928sseli 2996 . . . . 5 (𝑥𝑆𝑥𝐴)
30 offval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3129, 30sylan2 280 . . . 4 ((𝜑𝑥𝑆) → (𝐹𝑥) = 𝐶)
32 inss2 3194 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
3324, 32eqsstr3i 3031 . . . . . 6 𝑆𝐵
3433sseli 2996 . . . . 5 (𝑥𝑆𝑥𝐵)
35 offval.7 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3634, 35sylan2 280 . . . 4 ((𝜑𝑥𝑆) → (𝐺𝑥) = 𝐷)
3731, 36breq12d 3806 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ 𝐶𝑅𝐷))
3837ralbidva 2365 . 2 (𝜑 → (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
3918, 26, 383bitrd 212 1 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wral 2349  Vcvv 2602  cin 2973   class class class wbr 3793  dom cdm 4371   Fn wfn 4927  cfv 4932  𝑟 cofr 5742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ofr 5744
This theorem is referenced by:  ofrval  5753  ofrfval2  5758  caofref  5763  caofrss  5766  caoftrn  5767
  Copyright terms: Public domain W3C validator